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Abstract— In this paper, phase equilibrium of eleven binary systems containing acetone is estimated using artificial neural networks 
(ANN). VLE data were taken from literature for wide ranges of temperature (298.15-391.25K) and pressure (2.640 to 101.33kPa). Based 
on obtained results, the best structure for ANN is feed-forward network with sigmoid and linear activation functions for hidden and output 
layers, respectively. The network consists of seven inputs for temperature, pressure, acentric factor, critical temperature and critical 
pressure of the system, 19 neurons in hidden layer and two neurons in output layer corresponding to vapor and liquid compositions of 
acetone in binary mixture. The weights were optimized to minimize error between calculated and experimental VLE data using Levenberg-
Marquardt back propagation training algorithm. Results show that optimum network architecture is able to predict equilibrium data of binary 
systems containing acetone with an acceptable level of accuracy AAD % of 0.815, and R P

2
P of 0.9979. 

 
Index Terms: Phase equilibria, Artificial neural networks, Back propagation, Feed-forward ANN, Acetone 
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1 INTRODUCTION
APOR-liquid equilibrium data play important role for 
modeling, design and control of chemical processing 
systems. Usually equations of state are used for 

estimation of vapor-liquid equilibria. Using EOS for 
estimation of VLE makes it unsuitable for real time control 
because of many adjustable parameters used in EOS. Today’s, 
artificial neural networks have gained wide applications for 
estimation of properties of components such as viscosity [1-3], 
heat capacity [4-6], density [7-9], thermal conductivity [10-12] 
and vapor pressure [13]. Many studies have been done in the 
field of prediction of phase equilibria using artificial neural 
networks. Sharma, et al. [14] investigated potential application 
of artificial neural networks in thermodynamics. They 
predicted vapor-liquid equilibrium for ethane/methane and 
ammonia/water systems with error level of ±1%. Iliuta, et al. 
[15] investigated vapor-liquid equilibria in electrolyte 
solutions. They predicted vapor-liquid equilibrium with 
AAD% of 2.5 for all experimental data. 

Urata, et al. [16] investigated systems containing 
hydrofluoroethers (HFEs). They calculated activity coefficients 
using ANNs with reasonable accuracy. Mohanty [17, 18] 
predicted phase equilibrium for systems containing carbon 
dioxide. Systems investigated by Mohanty include carbon 
dioxide, ethyl caproate, ethyl caprilate, and ethyl caprate. The 
average absolute deviation of all systems for estimation of 
liquid phase mole fraction was less than 3% and for vapor 
phase mole fraction less than 0.02%. Govindarajan and 
Sabarathinam [19] investigated azeotropic systems. 

 
 
 

Also Ghanadzadeh and Ahmadifar [20] predicted VLE data 
of binary systems including tert-butanol + 2-ethyl-1-hexanol 
and n-butanol + 2-ethyl-1-hexanol. They calculated boiling 
temperature with AAD% of 3.3%. Lashkarbolooki, et al. [21] 
used ANN model for estimation of equilibrium in systems 
containing carbon dioxide. Their investigated systems include 
COR2R + 1-hexene, COR2R + n-Hexane and COR2R + n-butane. They 
predicted vapor-liquid equilibrium with an acceptable level of 
accuracy of ARD % of 2.66 and RP

2
P of 0.9950 within their 

experimental uncertainty. 
In this paper, phase equilibria for eleven binary systems 

containing acetone are investigated. 

2 THEORY 
2.1 Artificial neural networks 
The idea of artificial neural networks (ANNs) originates from 
human neural network. ANNs include sets of connected 
neurons. They are usually comprised of one input layer, one 
or more hidden layers and an output layer [7]. Output of each 
neuron before applying activation function is calculated from 
outputs of previous layers based on (1): 
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where 
h
js , h

i jw  , and h
jb  are output of jth neuron before 

applying activation function, weights connecting ith neuron 
(from previous layer) to jth neuron in current layer, and bias 
of jth neuron, respectively. Output of each neuron is 
calculated by an activation function as (2). 

( )h h
j jy F s=  (2) 

where h
jy  is output of jth neuron and F is activation function. 

Common activation functions are linear (purelin), logarithmic 
sigmoid (logsig), and hyperbolic tangent sigmoid (tansig) 
which are defined in equations (3) to (5), respectively: 

j jy s=  (3) 
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Generally, input layer uses required data to feed into the 
network and create the inputs of ANN. The outputs as 
dependent variables will be generated using output layer, and 
a hidden layer provides some flexibility [21]. 

It should be considered that, one of critical parameters is 
the number of neurons in the hidden layer because if the 
number of neurons is low then the network maybe unable to 
reach to the desired error, while a large number of neurons 
may cause over fitting [22]. Since there is not a specific method 
to determine the number of neurons of hidden layers, 
optimum number of neurons usually is determined by adding 
neurons during the training process, i.e. in a trial and error 
manner [7]. 

3 DISCUSSION 
3.1 Experimental data 
Compiling the database to train the network is the first step 
for neural network modeling. Experimental VLE data for 
eleven binary systems containing acetone within temperature 
range of 298.15-391.25K and pressure range of 2.640-101.33kPa 
are used for training, validating and testing AAN model 
which comprised of 304 experimental data points. The 
temperature and pressure range for phase equilibria are 
reported by the authors summarized in Table 1. 

TABLE 1 
EXPERIMENTAL DATA AND RANGE OF PARAMETERS USED IN THIS 

RESEARCH 
System Temperature (K) Pressure (kPa) Ref. 
1-Butanol 298.15 9.733– 25.331  [23] 

331.25 – 388.15 99.46 [24] 
2-Propanol 298.15 5.906 - 30.198 [25] 

328.15 34.393–94.308  [26] 
329.93 – 352.93  101.33 [26] 

Acetic acid 329.25 – 391.25 101.33 [27] 
333.85 – 385.25 101.33 [28] 
303.15 2.640 - 36.530 [29] 
308.15 – 328.15 5.346 - 90.081 [30] 

Acetonitrile 318.15 30.038 - 64.181  [31] 
330.75 – 352.95  101.19 [32] 

Benzene 318.15 33.428 - 67.189 [33] 
Ethanol 329.25 – 351.45  101.33 [34] 

330.15 - 348.55  101.33 [34] 
Ethyl acetate 329.75 - 348.45 101.33 [35] 

328.36 - 348.05 96.93 [36] 
312.45 - 332.55 53.33 [37] 

Vinyl acetate 298.15 – 323.15 16.731- 81.093 [30] 
P-Xylene 313.15 2.648 - 56.603  [38] 

313.15 9.9 - 53.5 [39] 
353.15 33.6 - 205.4 [39]  

Croton aldehyde 298.15 – 328.15 6.839 - 93.441 [30] 
Acetone oxime 
methyl ether 

329.4 - 342.4 101.3 [40] 

In this paper, mole fraction of acetone in liquid and vapor 
phase is estimated as a function of critical temperature, critical 
pressure, acentric factor, temperature, and pressure: 

( ) ( ), , , , ,c cx y f T P T Pω=  (6) 

Physical properties of the components are shown in Table 2. 

TABLE 2 
PHYSICAL PROPERTIES OF STUDIED COMPONENTS [41] 

Acentric 
factor 

Critical 
pressure 

(kPa) 

Critical 
temperature 

(K) 

Normal 
boiling 

point (K) 

Molecular 
weight 

Component 

0.5929 4420 563.098 390.898 74.123 1-Butanol 
0.6746 3870 552 392.148 88.1492 2-Propanol 
0.6443 6147 513.9 351.398 46.0699 Ethanol 
0.4469 5770 592.7 391.1 60.0517 Acetic acid 
0.3269 4820 545.5 354.799 41.053 Acetonitrile 
0.5595 3080 652 463.648 146.143 Ethyl acetate 

0.34 4349 525 346 86.091 Vinyl acetate 
0.215 4924 562.098 353.239 78.11 Benzene 
0.3258 3510 616.26 411.51 106.166 p-Xylene 
0.7538 1860 685 523.15 184.322 Croton aldehyde 
0.5854 5220 630 431.148 75.1106 AOME 

3.2  Error analysis of ANNs 
In order to evaluate the accuracy and efficiency of proposed 
ANN model for prediction of VLE data at different 
temperatures and pressures, some statistical parameters 
including average absolute deviation percent (AAD %), 
average deviation percent (Bias), root mean square error 
(RMS) and correlation coefficient (RP

2
P) were utilized which are 

defined as follows [7]: 
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where N is the number of VLE data points, exp
iA  is the ith 

experimental value, cal
iA   is the ith value predicted by ANN 

model, and A  is the average value of experimental VLE data. 

3.3 Neural network model 
Feed forward neural network is selected as ANN model as all 
systems are stationary. The schematic of ANN used to predict 
phase equilibria of binary systems containing acetone is 
shown in Fig. 1. 

 
Fig. 1. Schematic of the neural network model used for phase equilibria 

In this research 70% of experimental data were used for 
training, 20% for validating and 10% for testing. 
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Usually researchers state that a neural network with only 
one hidden layer is capable of estimating almost any type of 
nonlinear mapping [21]. Therefore, in this paper, an ANN 
with only one hidden layer is selected. Different combinations 
of activation functions were tested to select the best activation 
functions for hidden and output layers. The optimum number 
of neurons in hidden layer was determined based on the 
minimum AAD% and R2 

3.4 Results 
Table 3 shows values of AAD% and R2 of different activation 
functions with optimal number of neurons for each case study. 
According to Table 3, ANN with logsig-purelin activation 
functions with 19 neurons in hidden layer has the least error. 

TABLE 3 
AAD% AND R2 OF DIFFERENT ACTIVATION FUNCTIONS WITH OPTIMAL 

NUMBER OF NEURONS IN EACH CASE 

Activation 
function 

Number of 
neurons 

AAD% R2 Hidden 
layer 

Output 
layer Train Test Train Test 

Logsig Purelin 19 0.7176 0.8581 0.9984 0.9981 
Logsig Logsig 20 1.4393 1.6264 0.9912 0.9892 
Logsig Tansig 18 1.0049 1.2491 0.9971 0.9959 
Tansig Logsig 17 1.1451 1.3299 0.9924 0.9913 
Tansig Tansig 19 0.9575 1.1625 0.9975 0.9965 

Table 4 shows values of AAD% and R2 of different number 
of neurons in hidden layer with sigmoid-purelin activation 
functions. Results show that the trained neural network can 
estimate phase equilibrium data, precisely. 

TABLE 4 
AAD% AND R2 OBTAINED WITH DIFFERENT NUMBER OF NEURONS IN 

HIDDEN LAYER AND SIGMOID-LINEAR ACTIVATION FUNCTION 

    AAD% R2     AAD% R2 

3 
train 7.083 0.8791 

14 
train 0.8524 0.9977 

test 7.559 0.863 test 1.213 0.9955 

4 
train 3.791 0.9667 

15 
train 0.851 0.9981 

test 4.886 0.9453 test 1.294 0.9955 

5 
train 3.413 0.9764 

16 
train 0.8392 0.9977 

test 4.232 0.9542 test 1.035 0.991 

6 
train 2.921 0.9811 

17 
train 0.8052 0.9981 

test 3.572 0.9659 test 0.949 0.9953 

7 
train 2.349 0.9894 

18 
train 0.736 0.9981 

test 3.088 0.9772 test 0.892 0.9957 

8 
train 1.886 0.9922 

19 
train 0.7176 0.9984 

test 2.706 0.9853 test 0.8581 0.9981 

9 
train 1.857 0.9924 

20 
train 0.7122 0.9985 

test 2.24 0.9891 test 0.8715 0.9966 

10 
train 1.426 0.9955 

21 
train 0.7106 0.9985 

test 1.9604 0.9893 test 0.897 0.9963 

11 
train 1.314 0.9961 

22 
train 0.7113 0.9986 

test 1.931 0.9879 test 0.9197 0.996 

12 
train 1.096 0.997 

23 
train 0.7083 0.9987 

test 1.7533 0.9884 test 0.9614 0.9956 

13 
train 0.9312 0.9974 

24 
train 0.7012 0.9986 

test 1.477 0.9964 test 0.1083 0.9936 

Fig. 2 illustrates comparison between predicted and 
experimental data. The perfect fit is indicated by the solid line. 
Results in Fig. 2 show a good correlative capability of ANN 
model. 

  
Fig. 2. Comparison between predicted and experimental data for (a) 
training, (b) validation, (c) test, and (d) total data set 

The weight and bias values of the optimal architecture are 
shown in Table 5. Several calculations have been performed to 
examine the capability of ANN. Results of predicting vapor 
liquid equilibria based on available data points of each system 
are summarized in Table 6. 

TABLE 5 
THE WEIGHT AND BIAS VALUES OF THE OPTIMAL ARCHITECTURE 

  Tc Pc w T P Bias         

1 -1.4420 -0.0892 1.9562 0.4218 1.18038 2.1536     
2 -1.4321 -2.7192 3.4760 0.4321 1.10668 2.8404     
3 1.9846 -3.7186 3.1848 3.5962 -0.2398 -4.9793     
4 -2.7383 1.4259 2.3208 -2.4830 3.9994 4.3073     
5 -3.5909 -2.7672 -4.5301 3.7526 -2.1980 3.7959     
6 -2.7665 -3.2084 5.2964 -4.3322 2.0525 0.3778     
7 0.3179 0.4387 0.0233 2.0595 -3.4416 -1.8448     
8 1.1780 -2.1007 -0.2451 3.5252 3.3067 2.9484     
9 0.2329 -3.0839 1.4379 -3.0267 3.3013 1.4887     
10 -4.1214 1.9825 0.7078 1.5427 2.5526 0.3177     
11 0.0138 -0.4667 -0.7542 1.1157 2.9490 -0.0156     
12 1.2598 -5.4285 -0.8154 -1.5749 -3.1135 -0.1067     
13 0.6373 -1.1250 2.1946 1.2423 0.6809 -2.1425     
14 -3.0632 1.6792 2.1460 1.3543 0.5092 -0.9694     
15 -3.2319 -2.2977 2.0497 -2.5934 -0.7047 -2.9267     
16 1.3601 3.9714 5.7476 -2.1223 -1.9046 -5.7501     
17 2.8323 -1.9016 1.9343 -2.7668 1.7352 1.3446     
18 -1.4980 -0.0338 -0.9824 -7.3949 2.3041 -7.2597     
19 -4.1945 -2.3838 1.2778 0.5747 -1.7096 -3.6355         
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Neuron 1 2 3 4 5 6 7 8 9 10 

Layer -1.7878 1.1185 -0.7783 3.2476 0.7388 -0.4506 5.1168 1.1308 -0.3763 2.7447 

Weights -1.2502 1.05108 5.0894 2.6642 2.0833 0.0867 1.8141 0.3925 -0.9799 1.8490 

Neuron 11 12 13 14 15 16 17 18 19 Bias 

Layer -0.8448 1.5444 2.0697 -0.4876 -0.9895 1.2392 0.7479 1.3176 -0.4543 2.3293 

Weights -0.5411 -0.2063 -3.3246 -1.6525 -1.1745 0.3411 1.7054 -3.8001 1.6102 -4.2380 

TABLE 6 
DEVIATIONS OF PREDICTION OF VAPOR-LIQUID EQUILIBRIA BASED ON 

NEURAL NETWORK MODEL DEVELOPED BY EXPERIMENTAL DATA 
POINTS OF EACH SYSTEM 

System AAD% Bias% RMS R2 
1-Butanol 0.7888 0.8446 0.1140 0.9989 
2-Propanol 0.7989 -1.0310 0.0894 0.9973 
Ethanol 0.3847 -0.1444 0.0143 0.9995 
Acetic acid 1.1730 -0.3501 0.0874 0.9970 
Acetonitrile 0.7290 -1.1412 0.1157 0.9982 
Ethyl acetate 0.5533 -0.3631 0.0339 0.9993 
Vinyl acetate 0.6206 0.2226 0.0255 0.9992 
Benzene 0.2108 0.0375 0.0097 0.9999 
P-Xylene 1.1869 -0.0750 0.0584 0.9962 
Croton aldehyde 0.7072 -0.2637 0.0622 0.9965 
AOME 1.5374 0.3210 0.0346 0.9937 
Overall 0.8154 -0.2139 0.0653 0.9979 

Comparison between experimental data and predicted 
values of neural network for each of the binary systems are 
shown in Figs (3) and (4). 

 
Fig. 3. Comparison between predicted (-) and experimental data, (a) 1-
Butanol, (b) 2-Propanol, (c) Ethanol, (d) Acetic acid, (e) Acetonitrile, and 
(f) Ethyl acetate 

 
Fig. 4. Comparison between predicted (-) and experimental data, (a) Vinyl 
acetate, (b) Benzene, (c) p-xylene, (d) Croton aldehyde, and (e) AOME  

4 CONCLUSIONS 
In this paper, artificial neural network models have been 
developed for eleven binary systems containing acetone to 
estimate vapor-liquid equilibria within temperature range of 
298.15–391.25 K and pressure range of 2.640–101.33 kPa. Out 
of 304 experimental data points, 70% were used for training of 
neural network, 20% for validating and 10% for testing. Based 
on the obtained results, the best structure is feed-forward 
network, logsig activation function for hidden layer and 
purelin activation function for output layer. Levenberg-
Marquardt back propagation training algorithm was used for 
network training. Multilayer perceptron model consists of 
seven inputs, 19 neurons in hidden layer and two neurons in 
output layer. The weights are optimized to minimize the error 
between calculated and experimental VLE data. The absolute 
average error for estimating the VLE was found to be quite 
low. Obtained results show that the optimum neural network 
architecture is able to predict equilibrium data of binary 
systems containing acetone with an acceptable level of 
accuracy of AAD% of 0.815, RP

2
P of 0.9979 and RMS of 0.0653. 
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